

1

User Guide

BCS

API

PROGRAMMER’S

MANUAL
Issue 3.8 | 19TH DECEMBER 2023

2

TABLE OF CONTENTS
Revision History .. 5

1. introduction .. 6

2. Connection to the BCS Clearing system .. 8

3. Configuration file .. 10

4. Type definitions .. 14

4.1 GK_Reply_t.. 15

4.2 GK_MarketReply_t ... 17

4.3 GK_ClassType_t ... 18

4.4 GK_Status_t .. 18

4.5 GK_Chain_t ... 18

4.6 GK_Notification_t .. 18

4.7 GK_ApplicationData_t ... 19

4.8 GK_Callback_t ... 20

4.9 GK_Tag_t ... 20

4.10 GK_Data_t ... 20

4.11 GK_Transaction_t .. 20

4.12 GK_Subscription_t ... 20

4.13 GK_Inquire_t ... 21

4.14 GK_Context_t .. 21

4.15 GK_Connection_t ... 21

4.16 GK_Length_t ... 21

4.17 GK_Byte_t ... 21

4.18 GK_UnzipHelper_t ... 21

5. Main callback functions .. 22

5.1 GK_Initialize .. 23

5.2 GK_Terminate.. 23

5.3 GK_CreateContext ... 24

5.4 GK_Dispatch .. 25

5.5 GK_ReleaseContext ... 25

5.6 GK_Connect ... 26

5.7 GK_Disconnect .. 28

5.8 GK_CreateTransaction ... 28

3

5.9 GK_DestroyTransaction ... 29

5.10 GK_Submit .. 30

5.11 GK_Subscribe .. 31

5.12 GK_UnSubscribe .. 33

5.13 GK_Inquire .. 34

5.14 GK_GetVersion .. 36

5.15 GK_ConnectEx ... 36

6. Introduction to Callbacks ... 39

6.1 Connection request result.. 40

6.2 Disconnect request result .. 41

6.3 Connection monitoring .. 42

6.4 Application message submission result ... 43

6.5 Application message subscription result ... 43

6.6 Application message unsubscription result ... 44

6.7 Data inquiry request result .. 44

6.8 Data subscription notification .. 45

6.9 Data inquiry notification .. 45

7. Retrieving data from callback objects ... 47

7.1 Connection request result ... 48

7.2 GK_GetNotificationType .. 48

7.3 GK_GetConnectionStatus ... 48

7.4 GK_GetTransactionID .. 49

7.5 GK_GetMarketResponse .. 50

7.6 GK_GetSubscriptionID ... 51

7.7 GK_GetInquireID ... 51

7.8 GK_GetClassName ... 52

7.9 GK_DecodeData ... 53

7.10 GK_GetValueString .. 53

7.11 GK_GetValueLong .. 54

7.12 GK_GetValueDouble .. 55

7.13 GK_GetValueInt ... 55

7.14 GK_GetChain ... 56

7.15 GK_GetBinaryData ... 57

8. Building application data messages .. 58

4

8.1 GK_CreateApplicationData .. 59

8.2 GK_EncodeData ... 59

8.3 GK_SetValueString .. 60

8.4 GK_SetValueLong .. 60

8.5 GK_SetValueDouble ... 61

8.6 GK_SetValueInt ... 62

8.7 GK_DestroyApplicationData... 62

8.8 GK_SetTransactionID .. 63

9. Unzipping callback functions .. 64

9.1 GK_CreateUnzipHelper .. 65

9.2 GK_DestroyUnzipHelper .. 66

9.3 GK_InitializeUnzipHelper .. 66

9.4 GK_ClearUnzipHelper .. 67

9.5 GK_UnzipBinaryData ... 67

10. recovery ... 69

10.1 Services ... 70

10.2 Subscribe.System.ServiceMarketStatus ... 71

10.3 Notify.System.ServiceMarketStatus ... 71

10.4 Recovery Simulation in CDS (Test) environment 73

INTRODUCTION

5

Revision History

Date Version Description Author

Apr 2021 3.7 Euronext rebranding Borsa Italiana

Oct 2022 3.7a Rebranding Borsa Italiana

Dec 2023 3.8 GK_Dispatch description clarified, Euronext IP Borsa Italiana

INTRODUCTION

6

1. INTRODUCTION

INTRODUCTION

7

This document describes the main features of BCS API library (GKAPI). It is to be used

in conjunction with the BCS API Data Layouts document in order to have an overview of

how to interface the BCS Clearing system using the BCS API libraries.

The BCS API library provides developers with a set of callback functions which allows

third party applications to correctly interface toward the BCS Clearing system, managing

connections, transactions, subscriptions and notifications. It also defines operation types

(Connect, Submit, Subscribe, etc.) and response types (CallBackConnect,

CallBackSubscribe, CallBackData, etc…).

The BCS API library:

● is a thread-safe library;

● allows connections to the BCS Clearing System through one or more application

servers;

● implements a proprietary protocol to exchange application data messages; it

maintains a live connection until the client disconnection has been requested;

● manages configurable application windows;

● monitors the TCP/IP connection and alerts when connectivity problems arise;

● traces all working activities;

2. CONNECTION TO THE BCS
CLEARING SYSTEM

CONNECTION TO THE BCS CLEARING SYSTEM

9

In order to properly connect to the BCS Clearing System, a set of technical callback

functions should be used. The following steps need to be executed before

sending/receiving data:

• Initialize: this allows to initialize the BCS API library;

• Create Context: this allows to establish a physical connection to the specified
application server of the BCS Clearing system; the Context Id returned by the
callback should be used as an input parameter in any request sent to the system
(Submit, Inquire, Subscribe, UnSubscribe, …);

• Start a dedicated thread to manage Dispatch: this allows to handle callbacks as
soon as an event raises; a thread should be created for each working context;

• Connect: this allows to start a communication session to the BCS Clearing
system;

• Create Transaction: this allows to get a Transaction Id which has to be used in
every Submit sent to the BCS Clearing system; if the system is still processing
a submit request, it will reject any other submit request using the same
Transaction Id, whereas it will accept requests with different Transaction Ids
(previously received with a Create Transaction);

The following steps have to be executed in order to properly disconnect from the BCS

Clearing system:

• Destroy Transaction: this allows to release all internal structures set up by the
CreateTransaction function;

• Disconnect: this allows to disconnect from the BCS Clearing system;

• Release Context: this allows to release/destroy a working context;

• Terminate: this allows to release the BCS API library;

3. CONFIGURATION FILE

CONFIGURATION FILE

11

The BCS API library configuration file (GKApi.cfg) allows to define:

• the keep-alive message frequency;

• the application windows size;

• the application servers of the BCS Clearing system the BCS library should connect

to;

The configuration file structure is defined as follows:

[GENERIC_SETTINGS]

TRACE_FILE=.\GKApi.log // Application messages trace output file.

TRACE_LEVEL=ERR // ERR,WRN,INF,DBG

MESSAGES_FILE=.\GKMessages.cfg // Configuration file which contains

// debugging messages

CALLBACK_QUEUE_SIZE=1024 // Maximum number of queued call-backs

MAX_NUMBER_OF_CONTEXT=512 // Maximum number of contexts that can be

// created and used at the same time (this value

// depends on the number of available sockets)

[GATEMARKET_SERVERS]

SERVER_LIST=METAMARKET01;METAMARKET02

// List of available application servers

[METAMARKET01]

TCP_IP= 212.107.67.4

TCP_PORT= 34900

KEEPALIVE_TIMEOUT=30 // Expressed in seconds

APPLICATION_WINDOW_SIZE=20000

// Maximum number of pending requests that can

// be managed at the same time for the current

// context.

TRACE_LEVEL=DBG // ERR,WRN,INF,DBG

TRANSACTION_BUFFER_SIZE=20000

// Maximum number of parallel transactions to be

// preallocated and used by the GK-API.

// If exceeded, new resources will be allocated

// upon request

CONFIGURATION FILE

12

SUBSCRIPTION_BUFFER_SIZE=20000

// Maximum number of parallel subscriptions to

// be preallocated and used by the GK-API.

// If exceeded, new resources will be allocated

// upon request

INQUIRE_BUFFER_SIZE=20000 // Maximum number of parallel inquiries to be

// preallocated and used by the GK-API.

// If exceeded, new resources will be allocated

// upon request

TCP_BUFFER_SIZE=30000 // Maximum I/O buffer size expressed in

bytes.

[METAMARKET02]

TCP_IP=212.107.67.5

TCP_PORT=34900

KEEPALIVE_TIMEOUT=30 // Expressed in seconds

APPLICATION_WINDOW_SIZE=20000

// Maximum number of pending requests that can

// be managed at the same time for the current

// context.

TRACE_LEVEL=DBG // ERR,WRN,INF,DBG

TRANSACTION_BUFFER_SIZE=20000

// Maximum number of parallel transactions to be

// preallocated and used by the GK-API.

// If exceeded, new resources will be allocated

// upon request

SUBSCRIPTION_BUFFER_SIZE=20000

// Maximum number of parallel subscriptions to

// be preallocated and used by the GK-API.

// If exceeded, new resources will be allocated

// upon request

INQUIRE_BUFFER_SIZE=20000 // Maximum number of parallel inquiries to be

// preallocated and used by the GK-API.

CONFIGURATION FILE

13

// If exceeded, new resources will be allocated

// upon request

TCP_BUFFER_SIZE=30000 // Maximum I/O buffer size expressed in

bytes.

4. TYPE DEFINITIONS

TYPE DEFINITIONS

15

The BCS API library manages the following data types:

• GK_Reply_t Reply code from each protocol session

• GK_MarketReply_t Reply structure to handle returned events from

previous requests

• GK_ClassType_t Application data layout type

• GK_Status_t Connection status types

• GK_Chain_t Types for controlling chains for snapshot

information

• GK_ApplicationData_t Type structure which contains application data

to be sent

• GK_Callback_t Call-back generic structure

• GK_Tag_t User Tag returned by each call-back; (void*)

• GK_Data_t Application data handle (long)

• GK_Transaction_t Transaction identifier (long)

• GK_Subscription_t Subscription identifier (long)

• GK_Inquire_t Inquire identifier (long)

• GK_Context_t Connection session identifier

• GK_Connection_t Identifier of a communication channel with an

application server. It is a socket corresponding

to connection on a context

• GK_Notification_t Call-back notification types

• GK_Byte_t Data type used for buffers containing binary

data

• GK_Length_t Data buffer’s size

• GK_UnzipHelper_t Internal structure used to unzip binary

compressed data

4.1 GK_Reply_t

Contains return code coming back from a protocol session. It is an enumerated type and

may assume the following values:

• GK_SUCCESS Request successfully completed

• GK_FAILED Generic error. Usually returned by all

functions that extract data from

call-backs

• GK_INVALID_CONFIG_FILE Configuration file not valid

TYPE DEFINITIONS

16

• GK_INVALID_SERVER Application server not valid

• GK_INVALID_HANDLE Handle not valid

• GK_API_ERROR Internal API error

• GK_API_NOT_INITIALIZED API not initialized

• GK_API_ALREADY_INITIALIZED API already initialized

• GK_INVALID_CONTEXT Market context not valid

• GK_SERVER_UNREACHABLE Application server not reachable

• GK_INVALID_TRANSACTIONID Request refused. Transaction

identifier not valid

• GK_INVALID_SUBSCRIPTIONID Request refused. Subscription

identifier not valid

• GK_COMMAND_ON_GOING Request refused. Request of the

same type is still on going

• GK_TYPE_MISMATCH Attempting to read -a field using a

wrong field-type.

• GK_CONTEXT_BUSY Context is busy whenever it is trying

to connect to a context already in

use

• GK_MISSING_CONNECTION A request has been sent before

establishing a connection

• GK_OVERLOAD The application window is full. The

client application must wait for the

completion of some previously issued

requests before sending a new one

• GK_INVALID_PARAMETER Request refused. One or more

supplied parameters are null or

invalid.

• GK_DATA_ERROR Request refused. Supplied data are

invalid or corrupted.

• GK_MORE_OUTPUT_AVAILABLE Request successfully completed.

More output space have to be

provided to complete the whole

operation.

• GK_MORE_INPUT_NEEDED Request successfully completed.

More input data are required to

complete the whole operation.

TYPE DEFINITIONS

17

4.2 GK_MarketReply_t

Contains return codes from a market gateway or clearing house system. It is an

enumerated type and may assume the following values:

• GK_REQUEST_ACCEPTED Request accepted

• GK_REQUEST_REJECTED Request refused. Generic Error

• GK_REQUEST_WARNING Request has been accepted but a

warning situation arises (e.g one of the

contexts is not connected)

• GK_ALREADY_CONNECTED Connection already established

• GK_INVALID_MARKET Request refused. Market name is

invalid

• GK_INVALID_CLASS Request refused. Class name is invalid

• GK_NO_MARKET_CONTEXT Request refused. Connection has not

been established

• GK_INVALID_FIELD Request refused. One of the class fields

is invalid

• GK_REQUEST_ON_GOING Request refused. A request of the

same type is already pending

• GK_LICENCE_ERROR Maximum number of connections

reached

• GK_PROPOSAL_ALREADY_EXISTS A proposal on the same transaction

already exists

• GK_PROPOSAL_NOT_EXISTS A proposal on the transaction does not

exist

• GK_INVALID_PROPOSAL_KEY Invalid proposal referenced

• GK_MISSING_FIELD_VALUE Mandatory field not set

• GK_ACCESS_DENIED User authentication completed

unsuccessfully

• GK_INSUFFICIENT_PRIVILEGES Insufficient privileges

• GK_WRONG_FIELD_VALUE A field contains a wrong value (e.g.

Side field is different from Buy and

Sell)

• GK_SERVER_NOT_AVAILABLE Application server unreachable

• GK_NOT_CONNECTED Request refused. Connection not

established

• GK_WRONG_PARAMETER Request refused. Some parameters are

wrong (e.g. parameter non allocated,

etc.)

TYPE DEFINITIONS

18

• GK_TIMED_OUT Request refused. Client has been

disconnected due to keep-alive timeout

4.3 GK_ClassType_t

Defines a class type and is an enumerated type and may assume the following values:

• GK_META_CLASS Meta-market application data layout, i.e. class

type used for a market class that merges all

differences among different market class into

a single class

• GK_MARKET_CLASS Native market application data layout

4.4 GK_Status_t

Defines a market connection status. It is an enumerated type and may assume the

following values:

• GK_CONNECTION_UP Connection is active

• GK_CONNECTION_DOWN Connection is broken

• GK_CONNECTION_WARNING Applicable to OnMarketStatus event only:

this means that not all connections are

active. Depending on the market, it

means that the bandwidth is being

reduced or, alternatively, that interaction

with the market can be seriously damaged

• GK_SERVER_DOWN Connection lost from application server

4.5 GK_Chain_t

Defines a chain type of snapshot data coming from events. It is an enumerated type and

may assume the following values:

• GK_CHAIN_CONTINUE New snapshot data can arrive

• GK_CHAIN_END Snapshot data are ended

• GK_CHAIN_NO_DATA Snapshot data not available

4.6 GK_Notification_t

Defines notification types of call-backs. It is an enumerated type and may assume the

following values:

TYPE DEFINITIONS

19

• GK_MARKET_STATUS_NOTIFICATION

• GK_CONNECTION_RESPONSE_NOTIFICATION

• GK_DISCONNECTION_RESPONSE_NOTIFICATION

• GK_TRANSACTION_STATUS_NOTIFICATION

• GK_SUBSCRIPTION_STATUS_NOTIFICATION

• GK_SUBMIT_RESPONSE_NOTIFICATION

• GK_SUBSCRIBE_RESPONSE_NOTIFICATION

• GK_UNSUBSCRIBE_RESPONSE_NOTIFICATION

• GK_INQUIRE_RESPONSE_NOTIFICATION

• GK_NOTIFY_DATA_NOTIFICATION

• GK_INQUIRE_DATA_NOTIFICATION

• GK_SET_NOTIFICATION_PERIOD_NOTIFICATION

• GK_BINARY_INQUIRE_DATA_NOTIFICATION

4.7 GK_ApplicationData_t

Defines the template of application messages to be sent to a market or clearing house

system.

typedef GK_ApplicationData_t

(

GK_ClassType_t classType,

const char* className,

const char* data

)

Fields can have the following values:

Type Property Name Description

GK_ClassType_t ClassType Class type or application

data layout type (meta-

market or market class)

const char* ClassName Class name

const char* Data Data layout in the format

field=value

TYPE DEFINITIONS

20

4.8 GK_Callback_t

Defines the template of call-backs.

typedef void (*GK_Callback_t)

(

GK_Context_t context, // Context who did generate the event

GK_Data_t gkData, // Data Handle

GK_Tag_t gkTag // User Tag

)

4.9 GK_Tag_t

The user can assign a tag to each request. The call-back will return it to the caller.

typedef const void * GK_Tag_t;

4.10 GK_Data_t

Data handle returned by the call-back. It can be used to find data coming from the call-

back itself.

typedef long GK_Data_t;

4.11 GK_Transaction_t

Transaction Id. This value has to be used in every Submit sent to the BCS Clearing

system; if the system is still processing a submit request, it will reject any other

submit request using the same Transaction Id, whereas it will accept requests with

different Transaction Ids (previously received with a Create Transaction).

typedef long GK_Transaction_t;

4.12 GK_Subscription_t

Subscription Id. This value identifies a Subscription sent to the BCS Clearing system.

typedef long GK_Subscription_t;

TYPE DEFINITIONS

21

4.13 GK_Inquire_t

Inquiry Id. This value identifies an Inquire sent to the BCS Clearing system.

typedef long GK_Inquire_t;

4.14 GK_Context_t

Context Id. This value has to be used as an input parameter in any request sent to the

system.

typedef long GK_Context_t;

4.15 GK_Connection_t

Connection Id. This value identifies a socket connection to an application server. The

client application must use it in the ‘select’ function to handle asynchronous events.

typedef int GK_Connection_t;

4.16 GK_Length_t

Data buffer’s size. Given a pointer to a data buffer, it defines how many elements of the

buffer are significant starting from the element pointed to.

typedef unsigned int GK_Length_t;

4.17 GK_Byte_t

Data type used for binary data buffers. It defines the data type of buffer elements used

to store binary data.

typedef unsigned char GK_Byte_t;.

4.18 GK_UnzipHelper_t

Structure used to unzip binary compressed data. It is managed internally by the GK-API.

typedef void* GK_UnzipHelper_t;

CHAPTER TITLE, VERDANA 9PT, RIGHT ALIGNED

5. MAIN CALLBACK
FUNCTIONS

MAIN CALLBACK FUNCTIONS

23

The following sections describe all the BCS API callback functions.

5.1 GK_Initialize

GK_Reply_t GK_Initialize(const

char*

ConfigFile);

Parameters ConfigFile Pathname of the file which

contains configuration parameters

for the GK-API

Return

values

GK_SUCCESS Initialization has been successfully

completed

 GK_INVALID_CONFIG_FILE
Initialization failure. Configuration file
not found or corrupted

 GK_API_ERROR Internal error

 GK_API_ALREADY_INITIALIZE

D

GK-API already initialized

 GK_INVALID_PARAMETER ConfigFile is null

Description This function must be called before any other GK-API function in

order to initialize the GK-API library.

5.2 GK_Terminate

GK_Reply_t GK_Terminate();

Parameters none

Return

values

GK_SUCCESS Initialization has been successfully

completed

 GK_API_NOT_INITIALIZED
API not initialized

Description This function must be called in order to release the GK-API library.

MAIN CALLBACK FUNCTIONS

24

5.3 GK_CreateContext

GK_Reply_t GK_CreateContext (const

char*

serverName,

 GK_Context_t* pContext,

 GK_Connection_t* pConnection);

Parameters serverName Name of the application server

through which connection must be

set up (one from the list in

SERVER_LIST in the configuration

file)

 pContext Working context identifier returned

by the GK-API

 pConnection
Identifier of a socket connection to the
application server. The client
application must use it in ‘select’
function to handle asynchronous
events

Return

values

GK_SUCCESS Context available, socket

connection established

 GK_API_ERROR Internal error

 GK_INVALID_SERVER Application server name invalid

(check if it is present in the

configuration file

 GK_SERVER_UNREACHABLE Server unreachable

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_INVALID_PARAMETER At least one of serverName,

pContext or pConnection is null

Description This function must be called to establish a physical connection to the

specified application server. A Context Id is returned. This identifier

must be used in any other request sent to the BCS Clearing system

(i.e. Submit, Inquire, Subscribe, UnSubscribe, …). It is possible to

create more than one context.

MAIN CALLBACK FUNCTIONS

25

5.4 GK_Dispatch

GK_Reply_t GK_Dispatch

(GK_Context_t

context);

Parameters context Working context identifier

Return

values

GK_SUCCESS Dispatch successfully completed

 GK_API_ERROR Internal error

 GK_INVALID_CONTEXT Context not valid

 GK_API_NOT_INITIALIZED API not initialized

Description This function is used to handle callbacks. GK_Dispatch must be

called as soon as an event raises from the working context and in

any case no less frequently than every 5 seconds. For this

purpose, before calling GK_Dispatch, call “select” API on the

socket returned by GK_CreateContext using a positive timeout

values (i.e. not zero; usual timeout value is 5 seconds). Moreover,

it is recommended to call GK_Dispatch using a dedicated thread,

one for each working context.

5.5 GK_ReleaseContext

GK_Reply_t GK_ReleaseContext (GK_Context_t context);

Parameters context Working context identifier

Return

values:

GK_SUCCESS Context successfully released.

 GK_API_ERROR
GK-API not initialized or internal error

 GK_INVALID_CONTEXT Context not valid

 GK_API_NOT_INITIALIZED GK-API not initialized

Description This function must be called to release/destroy a working context.

MAIN CALLBACK FUNCTIONS

26

5.6 GK_Connect

GK_Reply_t GK_Connect

(GK_Context_t

context,

 const char* userName,

 const char* password,

 const char* market,

 GK_Callback_t pCallbackResponse,

 GK_Callback_t pCallbackMarketStatus,

 GK_Tag_t gkTag)

Parameters context Active context identifier through

which a connection must be

performed.

 userName Name of the user requiring the

connection

 password
Password of the user requiring the
connection.

 market Market or Clearing House name to

which a connection is requested

(e.g. MTA, CCG, ...)

 pCallbackResponse Callback to handle a notification

event for the related request.

 pCallbackMarketStatus Callback to handle a notification

event for the connection status

 gkTag User tag returned by the callback

Return

values:

GK_SUCCESS Connection request successfully

executed

 GK_API_ERROR Internal error

 GK_INVALID_CONTEXT Context is not valid

 GK_SERVER_UNREACHABLE Server unreachable

 GK_API_NOT_INITIALIZED API not initialized

 GK_COMMAND_ON_GOING A connection request is still on

going and a notification event for

the previous request must be

received

MAIN CALLBACK FUNCTIONS

27

 GK_CONTEXT_BUSY Context is already in use (a

connection on the context is

already in place)

 GK_INVALID_PARAMETER At least one of userName,

password or market is null or too

long

 from pCallbackResponse

 GK_REQUEST_ACCEPTED Connection accepted

 GK_REQUEST_REJECTED Connection refused

 GK_ALREADY_CONNECTED Connection already in place

 GK_INVALID_MARKET MarketName is invalid

 GK_ACCESS_DENIED Unknown user

 GK_LICENCE_ERROR Maximum number of concurrent

connections exceeded

 GK_INSUFFICIENT_PRIVILEGE

S

User cannot connect to the

specified market

 from pCallbackMarketStatus

 GK_MARKET_STATUS_NOTIFICATION

• GK_CONNECTION_UP

All connections are active

• GK_CONNECTION_WARNI

NG
At least one connection is active,

while one or more other

connections can be down

• GK_CONNECTION_DOWN

No connection is active

• GK_SERVER_DOWN

Application server not reachable

 GK_TRANSACTION_STATUS_NOTIFICATION

• GK_CONNECTION_UP

Transaction is active

• GK_CONNECTION_DOWN

Transaction is not active

 GK_SUBSCRIPTION_STATUS_NOTIFICATION

• GK_CONNECTION_UP

Subscription is active

• GK_CONNECTION_DOWN

Subscription is not active

Description This function must be invoked to establish a connection to the BCS

Clearing system.

MAIN CALLBACK FUNCTIONS

28

5.7 GK_Disconnect

GK_Reply_t GK_Disconnect

(GK_Context_t

context,

 GK_Callback_t pCallbackResponse,

 GK_Tag_t gkTag);

Parameters: context Context identifier

 pCallbackResponse Call-back for request notification

 gkTag User tag returned by the call-back

Return
values: GK_SUCCESS

Disconnection successfully completed

 GK_API_ERROR
Internal error

 GK_INVALID_CONTEXT Context is not valid

 GK_SERVER_UNREACHABLE Server unreachable

 GK_API_NOT_INITIALIZED API not initialized

 from pCallbackResponse

 GK_REQUEST_ACCEPTED Connection accepted

 GK_REQUEST_REJECTED Connection refused

 GK_NOT_CONNECTED Connection not existing

Description This function must be invoked to release a connection to the BCS

Clearing system.

5.8 GK_CreateTransaction

GK_Reply_t GK_CreateTransaction

 (GK_Context_t context,

 GK_Transaction_t* pTransactionID);

Parameters: context Context identifier

 pTransactionID Transaction identifier returned by

the function

MAIN CALLBACK FUNCTIONS

29

Return

values

GK_SUCCESS
Transaction creation successfully

completed

GK_INVALID_CONTEXT Context is not valid

 GK_API_ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_INVALID_PARAMETER pTransactionID is null

Description: This function must be invoked in order to create a transaction

within the BCS Clearing system. A transaction is a physical

connection between the client and the BCS Clearing system which

allows handling fault detection and load balancing. The

Transaction Id returned by this function has to be used in every

Submit sent to the BCS Clearing system; if the system is still

processing a submit request, it will reject any other submit

request using the same Transaction Id, whereas it will accept

requests with different Transaction Ids (previously received

with a Create Transaction).

5.9 GK_DestroyTransaction

GK_Reply_t GK_DestroyTransaction

 (GK_Context_t context,

 GK_Transaction_ t transactionID);

Parameters: context Context identifier

 transactionID
Transaction identifier

Return

values

GK_SUCCESS
Destroy transaction successfully

completed

GK_INVALID_TRANSACTIONID Transaction identifier is not valid

 GK_INVALID_CONTEXT Context not valid

 GK_API_ERROR
Internal error

 GK_API_NOT_INITIALIZED API not initialized

 GK_SERVER_UNREACHABLE Server unreachable

MAIN CALLBACK FUNCTIONS

30

Description: This function must be invoked to release all internal structures set

up by the CreateTransaction function. It must be invoked before

the GK_Disconnect function.

5.10 GK_Submit

GK_Reply_t GK_Submit (GK_Context_t context,

 GK_Transaction_t transactionID,

 GK_ApplicationData_t* applicationData,

 GK_Callback_t pCallbackResponse,

 GK_Tag_t gkTag);

Parameters: context Context identifier

 transactionID Transaction identifier

 applicationData Application data layout to be

executed. It can be built using

proper functions (see below)

 pCallbackResponse Callback to handle a notification

event for that request.

 gkTag User tag returned by the callback

Return

values

GK_SUCCESS Submit request successfully

executed

GK_INVALID_CONTEXT Context not valid

 GK_API_ERROR Internal error

 GK_INVALID_TRANSACTIONID Transaction identifier is not valid

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_SERVER_UNREACHABLE Server unreachable

 GK_COMMAND_ON_GOING A connection request is still on

going and a notification event

for the previous request must be

received

 GK_OVERLOAD Application window is exhausted.

The caller must wait for

completion of some previous

accepted requests

 GK_INVALID_PARAMETER applicationData is null

MAIN CALLBACK FUNCTIONS

31

 from pCallbackResponse

 GK_REQUEST_ACCEPTED Connection accepted

 GK_REQUEST_REJECTED Connection refused

 GK_REQUEST_WARNING Request accepted with some

specified warning

 GK_NO_MARKET_CONTEXT The market or clearing house

context is not available

 GK_INVALID_FIELD The specified field name is invalid

 GK_REQUEST_ONGOING A previous submit operation on

the same transaction identifier is

still on going

 GK_PROPOSAL_ALREADY_EXIS

TS

A proposal belonging to the

specified transaction identifier

already exists

 GK_PROPOSAL_NOT_EXISTS A proposal belonging to the

specified transaction identifier

does not exist

 GK_INVALID_PROPOSAL_KEY Invalid proposal referenced

 GK_MISSING_FIELD_VALUE Mandatory Field is emptymissing

 GK_INVALID_CLASS Class not valid

 GK_NOT_CONNECTED Connection in not in place

 GK_INVALID_TRANSACTIONID Transaction identifier is not valid

Description: This function must be invoked to send a Submit data structure to

the BCS Clearing system. If this message will be accepted, a

callback will be fired. if the system is still processing a submit

request, it will reject any other submit request using the same

Transaction Id, whereas it will accept requests with different

Transaction Ids (previously received with a Create Transaction).

5.11 GK_Subscribe

GK_Reply_t GK_Subscribe

(GK_Context_t

context,

 GK_ApplicationData_t* applicationData,

 GK_Callback_t pCallbackResponse,

 GK_Callback_t pCallbackData,

MAIN CALLBACK FUNCTIONS

32

 GK_Tag_t gkTag,

 GK_Subscription_t* pSubscriptionID);

Parameters: context Context identifier

 applicationData Application Data layout to be

executed. It can be built using

proper functions (see below)

 pCallbackResponse Call-back to handle a notification

event for that request.

 pCallbackData Call-back to handle a notification

event containing returned data.

 gkTag User tag returned by the call-

back

 pSubscriptionID Unique identifier for the

requested subscription

Return values

GK_SUCCESS Subscription request successfully

executed

GK_INVALID_CONTEXT Context not valid

 GK_API_ERROR Internal error

 GK_INVALID_

SUBSCRIPTIONID

Transaction identifier is not valid

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_SERVER_UNREACHABLE Server unreachable

 GK_OVERLOAD Application window is exhausted.

The caller must wait for

completion of some previous

accepted requests

 GK_INVALID_PARAMETER At least one of applicationData or

pSubscriptionID is null

 from pCallbackResponse

 GK_REQUEST_ACCEPTED Connection accepted

 GK_REQUEST_REJECTED Connection refused

 GK_REQUEST_WARNING Request accepted with some

specified warnings

 GK_NO_MARKET_CONTEXT The market or clearing house

context is not available

MAIN CALLBACK FUNCTIONS

33

 GK_INVALID_FIELD The specified field name is invalid

 GK_MISSING_FIELD_VALUE Mandatory field is empty

 GK_INVALID_CLASS Class not valid

 GK_NOT_CONNECTED Connection has not been set

 GK_WRONG_PARAM Wrong parameters passed

Description:
This function must be invoked to send a Subscribe data structure to the
BCS Clearing system.

5.12 GK_UnSubscribe

GK_Reply_t GK_UnSubscribe (GK_Context_t context,

 GK_Subscription_t* pSubscriptionID,

 GK_Callback_t pCallbackResponse,

 GK_Tag_t gkTag);

Parameters: context Context identifier

 pSubscriptionID Unique identifier for the

requested subscription to be

ended

 pCallbackResponse Call-back to handle a notification

event for that request.

 gkTag User tag returned by the callback

Return values

GK_SUCCESS Unsubscribe request successfully

executed

GK_INVALID_CONTEXT Context not valid

 GK_API_ERROR Internal error

 GK_INVALID_ SUBSCRIPTIONID Suscription identifier is not valid

 GK_API_NOT_INITIALIZED API not initialized

 GK_SERVER_UNREACHABLE Server unreachable

 GK_COMMAND_ON_GOING A connection request is still on

going and a notification event

for the previous request must be

received

 GK_OVERLOAD Application window is exhausted.

The caller must wait for

MAIN CALLBACK FUNCTIONS

34

completion of some previous

accepted requests

 from pCallbackResponse

 GK_REQUEST_ACCEPTED Connection accepted

 GK_REQUEST_REJECTED Connection refused

 GK_REQUEST_WARNING Request accepted with some

specified warming

 GK_NO_MARKET_CONTEXT The market or clearing house

context is not available

 GK_REQUEST_ONGOING A previous submit operation on

the same transaction identifier is

still on going

 GK_NOT_CONNECTED Connection in not in place

Description:
This function must be invoked to remove an active subscription. Subscriptions are not
removed when a client application logs off via the GK_Disconnect function.

5.13 GK_Inquire

GK_Reply_t GK_Inquire

(GK_Context_t

context,

 GK_ApplicationData_t* applicationData,

 GK_Callback_t pCallbackResponse,

 GK_Callback_t pCallbackData,

 GK_Tag_t gkTag;

 GK_Inquire_t* pInquiryID);

Parameters: context Context identifier

 applicationData Application Data layout to be

executed. It can be built using

proper functions (see below)

 pCallbackResponse Call-back to handle a notification

event for that request.

 pCallbackData Call-back to handle a notification

event containing returned data.

 gkTag User tag returned by the call-

back

MAIN CALLBACK FUNCTIONS

35

 pInquiryID Unique identifier for the

requested inquiry

Return values

GK_SUCCESS Inquire request successfully

executed

GK_INVALID_CONTEXT Context not valid

 GK_API_ERROR Internal error

 GK_API_NOT_INITIALIZED API not initialized

 GK_SERVER_UNREACHABLE Server unreachable

 GK_OVERLOAD Application window is exhausted.

The caller must wait for

completion of some previous

accepted requests

 GK_INVALID_PARAMETER At least one of applicationData or

pInquiryID is null

 from pCallbackResponse

 GK_REQUEST_ACCEPTED Connection accepted

 GK_REQUEST_REJECTED Connection refused

 GK_REQUEST_WARNING Request accepted with some

specified warnings

 GK_NO_MARKET_CONTEXT The market or clearing house

context is not available

 GK_INVALID_FIELD The specified field name is invalid

 GK_MISSING_FIELD_VALUE Mandatory field is empty

 GK_INVALID_CLASS Class not valid

 GK_NOT_CONNECTED Connection has not been set

 GK_REQUEST_ONGOING A previous inquiry operation on

the same transaction identifier is

still on going

 GK_WRONG_PARAM Wrong parameters passed

Description:
This function must be invoked to send an Inquire data structure to the BCS
Clearing system.

MAIN CALLBACK FUNCTIONS

36

5.14 GK_GetVersion

GK_Reply_t GK_GetVersion(char** company,

 char** version,

 char** creationDate,

 char** comment);

Parameters company Company that distributes the GK-

API

 version Version Identifier

 creationDate Creation date

 comment Any comment

Return

values:

GK_SUCCESS Request successfully executed

 GK_API_ERROR Internal error

Description This function must be invoked in order to know the current GK-API

version. The output parameters are allocated by the library and

they must be released by the client application using the

GK_FreeString() function.

5.15 GK_ConnectEx

GK_Reply_t GK_ConnectEx (GK_Context_t context,

 const char* userName,

 const char* password,

 const char* market,

 const char* ClientIP,

 const char* ClientData,

 GK_Callback_t pCallbackResponse,

 GK_Callback_t pCallbackMarketStatus,

 GK_Tag_t gkTag)

MAIN CALLBACK FUNCTIONS

37

Parameters context Active context identifier through

which a connection must be

performed.

 userName Name of the user requiring the

connection. Maximum allowed

length: 40 characters.

 password
Password of the user requiring the
connection. Maximum allowed length:
40 characters.

 market Market or Clearing House name to

which a connection is requested

(e.g. MTA, CCG, ...). Maximum

allowed length: 40 characters.

 ClientIP IP address of the client host. It is

sent to the server in order to

univocally identify the client.

Maximum allowed length: 15

characters.

 ClientData Free text sent to the server for log

purpose. Maximum allowed

length: 512 characters.

 pCallbackResponse Callback to handle a notification

event for the related request.

 pCallbackMarketStatus Callback to handle a notification

event for the connection status

 gkTag User tag returned by the callback

Return

values:

GK_SUCCESS Connection request successfully

executed

 GK_API_ERROR Internal error

 GK_INVALID_CONTEXT Context is not valid

 GK_SERVER_UNREACHABLE Server unreachable

 GK_API_NOT_INITIALIZED API not initialized

 GK_COMMAND_ON_GOING A connection request is still on

going and a notification event for

the previous request must be

received

 GK_CONTEXT_BUSY Context is already in use (a

connection on the context is

already in place)

MAIN CALLBACK FUNCTIONS

38

 GK_INVALID_PARAMETER At least one of userName,

password, market, ClientIP or

ClientData is null or too long

 from pCallbackResponse

 GK_REQUEST_ACCEPTED Connection accepted

 GK_REQUEST_REJECTED Connection refused

 GK_ALREADY_CONNECTED Connection already in place

 GK_INVALID_MARKET Invalid MarketName

 GK_ACCESS_DENIED Unknown user

 GK_LICENCE_ERROR Maximum number of concurrent

connections exceeded

 GK_INSUFFICIENT_PRIVILEGES User cannot connect to the

specified market

 from pCallbackMarketStatus

 GK_MARKET_STATUS_NOTIFICATION

• GK_CONNECTION_UP

All connections are active

• GK_CONNECTION_WARNING

At least one connection is active,

while one or more other

connections can be down

• GK_CONNECTION_DOWN

No connection is active

• GK_SERVER_DOWN

Application server not reachable

 GK_TRANSACTION_STATUS_NOTIFICATION

• GK_CONNECTION_UP

Transaction is active

• GK_CONNECTION_DOWN

Transaction is not active

 GK_SUBSCRIPTION_STATUS_NOTIFICATION

• GK_CONNECTION_UP

Subscription is active

• GK_CONNECTION_DOWN

Subscription is not active

Description This function must be invoked in order to establish a connection to the

BCS Clearing system.

CHAPTER TITLE, VERDANA 9PT, RIGHT ALIGNED

6. INTRODUCTION TO
CALLBACKS

INTRODUCTION TO CALLBACK

40

All callback functions have the following structure:

void Callback (GK_Context_t context,

GK_Data_t gkData,

GK_Tag_t gkTag);

The callback function is invoked by the GK-API to provide the calling application with

asynchronous notifications that can contains data or connection monitoring information.

The client application can define as many callbacks as required and then it can bind them

to each single request by passing its pointer to the function call.

To know the notification type belonging to the callback, the client application must invoke

the GK_GetNotificationType() function in the callback itself, passing the gkData

parameter.

The following notification types are available:

• GK_MARKET_STATUS_NOTIFICATION

• GK_CONNECTION_RESPONSE_NOTIFICATION

• GK_DISCONNECTION_ RESPONSE _NOTIFICATION

• GK_TRANSACTION_ STATUS_NOTIFICATION

• GK_SUBSCRIPTION_STATUS_NOTIFICATION

• GK_SUBMIT_ RESPONSE _NOTIFICATION

• GK_SUBSCRIBE_ RESPONSE _NOTIFICATION

• GK_UNSUBSCRIBE_ RESPONSE _NOTIFICATION

• GK_INQUIRE_ RESPONSE _NOTIFICATION

• GK_NOTIFY_DATA_NOTIFICATION

• GK_INQUIRE_DATA_NOTIFICATION

• GK_SET_NOTIFICATION_PERIOD_NOTIFICATION

• GK_BINARY_INQUIRE_DATA_NOTIFICATION

After notification type detection, the calling application can invoke proper functions, as

described below. It is possible (even if not recommended) to receive all notification

events through a unique callback. It is recommended to process each received callback

as soon as possible, in order to avoid disconnections due to keep-alive timeout.

6.1 Connection request result

void ConnectionResp

(GK_Context_t

context,

 GK_Data_t gkData,

INTRODUCTION TO CALLBACK

41

 GK_Tag_t gkTag);

Parameters: context Context identifier

 gkData Data returned from the

Notification event

 gkTag User tag returned by the callback

Description
The callback function pointer is passed to the connection request function.

The GK-API will call the callback whenever it must notify connection result.
If this callback function pointer is passed only to the connection request
function, it will be possible to receive only notification of the

GK_CONNECTION_RESPONSE_NOTIFICATION type. In order to know the
request result the GK_GetMarketResponse() function must be invoked
passing gkData.

6.2 Disconnect request result

void DisconnectionResp

(GK_Context_t

context,

 GK_Data_t gkData,

 GK_Tag_t gkTag);

Parameters: context Context identifier

 gkData Data returned from the

Notification event

 gkTag User tag returned by the callback

Description
The callback function pointer is passed to the disconnection request
function. The GK-API will call the callback whenever it must notify
disconnection result. If this call-back function pointer is passed only to the

connection request function, it will be possible to receive only notifications
of the GK_DISCONNECTION_RESPONSE_NOTIFICATION type. In order to

know the request result the GK_GetMarketResponse() function must be
invoked passing gkData.

INTRODUCTION TO CALLBACK

42

6.3 Connection monitoring

void MarketStatus

(GK_Context_t

context,

 GK_Data_t gkData,

 GK_Tag_t gkTag);

Parameter

s:

context Context identifier

 gkData Data returned from the Notification event

 gkTag User tag returned by the callback

Description
The callback function pointer is passed to the connection request

function. The GK-API will call the callback whenever it must notify

the market connection status. If this callback function pointer is

passed only to the connection request function, it will be possible to

receive notification of the following types:

• GK_MARKET_STATUS_NOTIFICATION type

• GK_TRANSACTION_ STATUS_NOTIFICATION type

• GK_SUBSCRIPTION_STATUS_NOTIFICATION type

As regards the GK_MARKET_STATUS_NOTIFICATION type, it will

possible to receive the following notifications:

• The GK_CONNECTION_UP status means all connections are

active.

• The GK_CONNECTION_DOWN status means all connections

are inactive.

• The GK_CONNECTION_WARNING status means at least one

connection is active.

• The GK_SERVER_DOWN status means the connection to the

server is lost.

In order to know the status value, the GK_GetConnectionStatus()

function must be invoked passing gkData.

As regards the GK_TRANSACTION_STATUS_NOTIFICATION type it

will be possible to receive the following notifications:

• The GK_CONNECTION_UP status means the related

transaction is active.

• The GK_CONNECTION_DOWN status means the related

transaction is inactive.

In order to know the related transaction identifier, the

GK_GetTransactionID() function must be invoked passing gkData.

As regards the GK_SUBSCRIPTION_STATUS_NOTIFICATION type it

will be possible to receive the following notifications:

INTRODUCTION TO CALLBACK

43

• The GK_CONNECTION_UP status means therelated

subscription is active.

• The GK_CONNECTION_DOWN status means the related

subscription is inactive. In this case, the calling application

should perform a new subscription from scratch.

In order to know the related subscription identifier, the

GK_GetSubscriptionID() function must be invoked passing gkData.

6.4 Application message submission result

void SubmitResp

(GK_Context_t

context,

 GK_Data_t gkData,

 GK_Tag_t gkTag);

Parameters: context Context identifier

 gkData Data returned from the

Notification event

 gkTag User tag returned by the callback

Description
The callback function pointer is passed to the submit request function. The

GK-API will call the callback whenever it must notify new results. If this
callback function pointer is passed only to the submit request function, it

will be possible to receive only notification of the
GK_SUBMIT_RESPONSE_NOTIFICATION type. In order to know the submit
result the GK_GetMarketResponse() function must be invoked passing
gkData. On the other hand, to know the transaction identifier belonging to
that submit the GK_GetTransactionID() function must be invoked passing
gkData.

6.5 Application message subscription result

void SubscribeResp (GK_Context_t context,

 GK_Data_t gkData,

 GK_Tag_t gkTag);

Parameters: context Context identifier

 gkData Data returned from the

Notification event

INTRODUCTION TO CALLBACK

44

 gkTag User tag returned by the call-

back

Description
The callback function pointer is passed to the subscribe request function. The GK-
API will call the callback whenever it must notify new results. If this callback function
pointer is passed only to the subscribe request function, it will be possible to receive
only notification of the GK_SUBSCRIBE_RESPONSE_NOTIFICATION type. In order
to know the subscription identifier the GK_GetSubscriptionID() function must be
invoked passing gkData. On the other hand, to know the request result the

GK_GetMarketResponse() function must be invoked passing gkData.

6.6 Application message unsubscription result

void UnSubscribeResp

(GK_Context_t

context,

 GK_Data_t gkData,

 GK_Tag_t gkTag);

Parameters: context Context identifier

 gkData Data returned from the

Notification event

 gkTag User tag returned by the call-

back

Description
The callback function pointer is passed to the unsubscribe request function. The
GK-API will call the callback whenever it must notify new results. If this callback
function pointer is passed only to the unsubscribe request function, it will be

possible to receive only notification of the
GK_UNSUBSCRIBE_RESPONSE_NOTIFICATION type. In order to know the
subscription identifier the GK_GetSubscriptionID() function must be invoked
passing gkData. On the other hand, to know the request result the
GK_GetMarketResponse() function must be invoked passing gkData.

6.7 Data inquiry request result

void InquireResp

(GK_Context_t

context,

 GK_Data_t gkData,

 GK_Tag_t gkTag);

Parameters: context Context identifier

INTRODUCTION TO CALLBACK

45

 gkData Data returned from the

Notification event

 gkTag User tag returned by the call-

back

Description
The callback function pointer is passed to the snapshot subscription
(inquiry) request function. The GK-API will call the callback whenever it
must notify a result. If this callback function pointer is passed only to the

snapshot subscription request function, it will be possible to receive only
notification of the GK_INQUIRE_RESPONSE_NOTIFICATION type. In order
to know the submit result the GK_GetMarketResponse() function must be
invoked passing gkData. On the other hand, to know the enquiry identifier
belonging to that subscription the GK_GetInquireID() function must be

invoked passing gkData.

6.8 Data subscription notification

void NotifyData (GK_Context_t context,

 GK_Data_t gkData,

 GK_Tag_t gkTag);

Parameters: context Context identifier

 gkData Data returned from the

Notification event

 gkTag User tag returned by the call-

back

Description
The callback function pointer is passed to the subscribe notification function.
The GK-API will call the callback whenever it must notify new data. If this
callback function pointer is passed only to the subscription request function,

it will be possible to receive only notification of the GK_NOTIFY_DATA
_NOTIFICATION type. In order to unpack incoming data the
GK_GetClassName(), GK_GetClassData(), GK_GetFieldClassData()
functions must be invoked passing gkData. On the other hand, to know the
subscription identifier belonging to that subscription, the
GK_GetSubscriptionID() function must be invoked passing gkData.

6.9 Data inquiry notification

void NotifyData (GK_Context_t context,

 GK_Data_t gkData,

 GK_Tag_t gkTag);

INTRODUCTION TO CALLBACK

46

Parameters: context Context identifier

 gkData Data returned from the

Notification event

 gkTag User tag returned by the call-

back

Description
The callback function pointer is passed to the snapshot subscription

(inquiry) notification function. The GK-API will call the callback

whenever it must notify new data. If this callback function pointer is

passed only to the inquiry request function, it will be possible to

receive only notification of the GK_INQUIRE_DATA_NOTIFICATION

and GK_BINARY_INQUIRE_DATA

_NOTIFICATION types. The received notification type only depends

on the class used in the inquiry request.

In order to unpack incoming data of

GK_INQUIRE_DATA_NOTIFICATION type, the GK_GetClassName(),

GK_GetClassData(), GK_GetFieldClassData() functions must be

invoked passing gkData. On the other hand, to know the inquiry

identifier belonging to that snapshot subscription, the

GK_GetInquireID() function must be invoked passing gkData.

Instead, in order to manage incoming data of

GK_BINARY_INQUIRE_DATA_NOTIFICATION type, the

GK_GetClassName() and GK_GetBinaryData() functions must be

invoked passing gkData. Data retrieved using the

GK_GetBinaryData() function are binary data. If multiple binary

notifications are received on an inquiry request, user have to

concatenate each binary data segment in the order they are received

to obtain the whole inquiry response data. Depending on the class

used in the inquiry request, the received binary data can be

compressed by the server. To decompress binary data, the

GK_UnzipBinaryData function must be invoked (see section Error!

Reference source not found.9.0).

CHAPTER TITLE, VERDANA 9PT, RIGHT ALIGNED

7. RETRIEVING DATA FROM
CALLBACK OBJECTS

RETRIEVING DATA FROM CALLBACK OBJECTS

48

7.1 Connection request result

GK_Reply_t GK_FreeString (char* data);

Parameters: data Data to be freed

Return

values:

GK_SUCCESS Function successfully completed

Description:
This function must be invoked to release all string-type and binary-type data

allocated by the GK-API.

7.2 GK_GetNotificationType

GK_Reply_t GK_GetNotificationType

(GK_Data_t

gkData,

 GK_Notification_t* pNotificationType);

Parameters: gkData Handle of available data

 pNotificationType Notification type

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked in order to extract the notification type
related to a callback. The function can be used for any notification type.

7.3 GK_GetConnectionStatus

GK_Reply_t GK_GetConnectionStatus

RETRIEVING DATA FROM CALLBACK OBJECTS

49

(GK_Data_t gkData,

 GK_ Status_t* pMarketStatus);

Parameters: gkData Handle of available data

 pMarketStatus Connection status

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked in order to extract the connection

status notified by a callback. The function can be used only for the

following notification types:

• GK_MARKET_STATUS_NOTIFICATION

• GK_TRANSACTION_STATUS_NOTIFICATION
• GK_SUBSCRIPTION_STATUS_NOTIFICATION

7.4 GK_GetTransactionID

GK_Reply_t GK_ GetTransactionID

(GK_Data_t

gkData,

 GK_Transaction_t* pTransaction);

Parameters: gkData Handle of available data

 pTransaction Transaction identifier

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

RETRIEVING DATA FROM CALLBACK OBJECTS

50

Description:
This function must be invoked in order to extract the transaction

identifier notified by a callback. The function can be used only for

the following notification types:

• GK_SUBMIT_RESPONSE_NOTIFICATION
• GK_TRANSACTION_STATUS_NOTIFICATION

7.5 GK_GetMarketResponse

GK_Reply_t GK_GetMarketResponse

(GK_Data_t

gkData,

 GK_MarketReply_t* pReply,

 char** specification);

Parameters: gkData Handle of available data

 pReply Reply coming from the market

 specification Subscription status

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked in order to extract the market reply

notified by a callback. The specification parameter is allocated by

the GK-API and must be released by the calling application by using

the GK_FreeString function. The function can be used only for the

following notification types:

• GK_SUBMIT_RESPONSE_NOTIFICATION

• GK_CONNECTION_RESPONSE_NOTIFICATION

• GK_DISCONNECTION_RESPONSE_NOTIFICATION

• GK_SUBMIT_RESPONSE_NOTIFICATION

• GK_SUBSCRIBE_RESPONSE_NOTIFICATION

• GK_UNSUBSCRIBE_RESPONSE_NOTIFICATION
• GK_INQUIRE_RESPONSE_NOTIFICATION

RETRIEVING DATA FROM CALLBACK OBJECTS

51

7.6 GK_GetSubscriptionID

7.7 GK_GetInquireID

GK_Reply_t GK_GetInquireID

(GK_Data_t

gkData,

 GK_Inquire_t* pInquire);

Parameters: gkData Handle of available data

 pInquire Inquiry identifier

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

GK_Reply_t GK_GetSubscriptionID

(GK_Data_t

gkData,

 GK_Subscription_t* pSubscription);

Parameters: gkData Handle of available data

 pSubscription Subscription identifier

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked in order to extract the subscription

identifier notified by a callback. The function can be used only for

the following notification types:

• GK_SUBSCRIBE_RESPONSE_NOTIFICATION

• GK_UNSUBSCRIBE_RESPONSE_NOTIFICATION

• GK_SUBSCRIPTION_STATUS_NOTIFICATION
• GK_NOTIFY_DATA_NOTIFICATION

RETRIEVING DATA FROM CALLBACK OBJECTS

52

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked in order to extract the inquiry

identifier notified by a callback. The function can be used only for

the following notification types:

• GK_INQUIRE_RESPONSE_NOTIFICATION
• GK_INQUIRE_DATA_NOTIFICATION
• GK_BINARY_INQUIRE_DATA_NOTIFICATION

7.8 GK_GetClassName

GK_Reply_t GK_GetClassName

(GK_Data_t

gkData,

 char** className,

 GK_ClassType_t* pClassType);

Parameters: gkData Handle of available data

 className Class name

 pClassType Class type

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked in order to extract the class name

notified by a callback. The className parameter is allocated by the

GK-API and must be released by the calling application using the

GK_FreeString function. The function can be used only for the

following notification types:

• GK_NOTIFY_DATA_NOTIFICATION
• GK_INQUIRE_DATA_NOTIFICATION
• GK_BINARY_INQUIRE_DATA_NOTIFICATION

RETRIEVING DATA FROM CALLBACK OBJECTS

53

7.9 GK_DecodeData

GK_Reply_t GK_DecodeData

(GK_Data_t

gkData,

 char** data);

Parameters: gkData Handle of available data

 data Application data

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked in order to extract the application data

(string) notifyed by a callback. The data parameter is allocated by

the GK-API and must be released by the calling application using

GK_FreeString. The function can be used only for the following

notification types:

• GK_NOTIFY_DATA_NOTIFICATION
• GK_INQUIRE_DATA_NOTIFICATION

7.10 GK_GetValueString

GK_Reply_t GK_GetValueString (GK_Data_t gkData,

 const char* Key ,

 char** value);

Parameters: gkData Handle of available data

 Key Filed name of the application data

 Value Returned value of requested filed

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

RETRIEVING DATA FROM CALLBACK OBJECTS

54

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_TYPE_MISMATCH The requested Key does not exist

Description:
This function must be invoked in order to extract the application data

(string) from the message notified by a callback. The Value parameter is

allocated and returned by the GK-API and must be released by the calling

application using the GK_FreeString function. The function can be used only

for the following notification types:

• GK_NOTIFY_DATA_NOTIFICATION

• GK_INQUIRE_DATA_NOTIFICATION

7.11 GK_GetValueLong

GK_Reply_t GK_GetValueLong

(GK_Data_t

gkData,

 const char* key,

 long* value);

Parameters: gkData Handle of available data

 Key Filed name of the application data

 Value Returned value of requested field

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_TYPE_MISMATCH The requested Key does not exist

Description:
This function must be invoked in order to extract the application data

(long) from the message notified by a callback. The function can be

used only for the following notification types:

• GK_NOTIFY_DATA_NOTIFICATION
• GK_INQUIRE_DATA_NOTIFICATION

RETRIEVING DATA FROM CALLBACK OBJECTS

55

7.12 GK_GetValueDouble

GK_Reply_t GK_GetValueDouble

(GK_Data_t

gkData,

 const char* key ,

 double* value);

Parameters: gkData Handle of available data

 Key Filed name of the application data

 Value Returned value of requested field

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_TYPE_MISMATCH The requested Key does not exist

Description:
This function must be invoked in order to extract the application data

(double) from the message notified by a callback. The function can be

used only for the following notification types:

• GK_NOTIFY_DATA_NOTIFICATION
• GK_INQUIRE_DATA_NOTIFICATION

7.13 GK_GetValueInt

GK_Reply_t GK_GetValueInt

(GK_Data_t

gkData,

 const char* key,

 int* value);

Parameters: gkData Handle of available data

 Key Filed name of the application data

 value Returned value of requested field

RETRIEVING DATA FROM CALLBACK OBJECTS

56

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_TYPE_MISMATCH The requested Key does not exist

Description:
This function must be invoked in order to extract the application data

(integer) from message notified by a callback. The function can be

used only for the following notification types:

• GK_NOTIFY_DATA_NOTIFICATION
• GK_INQUIRE_DATA_NOTIFICATION

7.14 GK_GetChain

GK_Reply_t GK_GetChain (GK_Data_t gkData,

 GK_Chain_t* pChain);

Parameters: gkData Handle of available data

 pChain Data chain

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_TYPE_MISMATCH The requested Key does not exist

Description:
This function must be invoked in order to extract the inquiry status

notified by a callback. The function can be used only for the following

notification types:

• GK_INQUIRE_DATA_NOTIFICATION
• GK_BINARY_INQUIRE_DATA_NOTIFICATION

RETRIEVING DATA FROM CALLBACK OBJECTS

57

7.15 GK_GetBinaryData

GK_Reply_t GK_GetBinaryData

(GK_Data_t

gkData,

 GK_Byte_t** pData,

 GK_Length_t* pDataLength);

Parameters: gkData Handle of available data

 pData Application binary data buffer

 pDataLength Returned length of binary data

buffer

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_INVALID_HANDLE The referred handle is not valid

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked in order to extract the application binary

data notifyed by a callback. The pData parameter is allocated by the

GK-API and must be released by the calling application using

GK_FreeString. The function can be used only for the following

notification types:

• GK_BINARY_INQUIRE_DATA_NOTIFICATION

CHAPTER TITLE, VERDANA 9PT, RIGHT ALIGNED

8. BUILDING APPLICATION
DATA MESSAGES

BUILDING APPLICATION DATA MESSAGES

59

8.1 GK_CreateApplicationData

GK_Reply_t

GK_CreateApplicationDa

ta (const char*

className,

 GK_ClassType_t classType,

 GK_ApplicationData_t** pApplicationData);

Parameters: className Data class name

 classType Data class type

 pApplicationData Pointer to the message structure

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked to create an application message

pApplicationData The pApplicationData parameter is allocated and
returned by the GK-API and must be released by the calling application
using the GK_FreeApplicationData() function.

8.2 GK_EncodeData

GK_Reply_t GK_EncodeData

(GK_ApplicationData_t*

pApplicationData,

 const char* data);

Parameters pApplicationData Pointer to the message structure

to be filled

 data Application fields (format:

“field=value; field=value;..”)

Return

values:

GK_SUCCESS
Function successfully completed

BUILDING APPLICATION DATA MESSAGES

60

 GK_FAILED Function not completed

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked to insert the application message using the

following format: “field=value”. As opposed to the GK_Set… functions
(which set a single field value at the time), this function will set the complete
message string abiding by the message layout.

8.3 GK_SetValueString

GK_Reply_t GK_SetValueString

(GK_ApplicationData_t*

pApplicationData,

 const char* key,

 const char* value);

Parameters pApplicationData Pointer to the message structure

to be filled

 Key Application filed name

 Value Field value to insert

Return

values:

GK_SUCCESS
Function successfully completed

 GK_FAILED Function not completed

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked to assign the value “value” to the field “key”
. If a value already exists, the new value will replace the previous one.

8.4 GK_SetValueLong

GK_Reply_t GK_SetValueLong

(GK_ApplicationData_t*

pApplicationData,

 const char* key,

 long value);

BUILDING APPLICATION DATA MESSAGES

61

Parameters pApplicationData Pointer to the message structure

to be filled

 Key Application filed name

 Value Field value to insert

Return

values:

GK_SUCCESS
Function successfully completed

 GK_FAILED Function not completed

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked to assign the value “value” to the field “key”
. If a value already exists, the new value will replace the previous one.

8.5 GK_SetValueDouble

GK_Reply_t GK_SetValueDouble

(GK_ApplicationData_t*

pApplicationData,

 const char* key,

 double value);

Parameters pApplicationData Pointer to the message structure

to be filled

 key Application filed name

 value Field value to insert

Return

values:

GK_SUCCESS
Function successfully completed

 GK_FAILED Function not completed

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked to assign the value “value” to the field “key”
. If a value already exists, the new value will replace the previous one.

BUILDING APPLICATION DATA MESSAGES

62

8.6 GK_SetValueInt

GK_Reply_t GK_SetValueInt

(GK_ApplicationData_t*

pApplicationData,

 const char* key,

 int value);

Parameters pApplicationData Pointer to the message structure

to be filled

 key Application field name

 value Field value to insert

Return

values:

GK_SUCCESS
Function successfully completed

 GK_FAILED Function not completed

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked to assign the value “value” to the field “key”

. If a value already exists, the new value will replace the previous one.

8.7 GK_DestroyApplicationData

GK_Reply_t GK_

DestroyApplicationData

(GK_ApplicationData_t*

pApplicationData);

Parameters pApplicationData Pointer to the message structure

to be filled

Return

values:

GK_SUCCESS
Function successfully completed

 GK_FAILED Function not completed

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

BUILDING APPLICATION DATA MESSAGES

63

Description:
This function must be invoked to release the message structure.

8.8 GK_SetTransactionID

GK_Reply_t GK_SetTransactionID

(GK_ApplicationData_t*

pApplicationData,

 GK_Transaction_t transaction);

Parameters pApplicationData Pointer to the message structure

to be filled

 transaction Transaction identifier

Return

values:

GK_SUCCESS
Function successfully completed

 GK_FAILED Function not completed

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked to insert a transaction identifier within an
application message. This type of application message is needed to
subscribe information related to the related transaction (e.g. status,
proposal information belonging to the transaction).

CHAPTER TITLE, VERDANA 9PT, RIGHT ALIGNED

9. UNZIPPING CALLBACK
FUNCTIONS

UNZIPPING CALLBACK FUNCTIONS

65

Binary compressed data received on notification of GK_BINARY_INQUIRE_DATA_

NOTIFICATION type can be decompressed using the GK_UnzipBinaryData() function,

which provides an in-memory decompression mechanism including integrity checks of the

uncompressed data.

To call the GK_UnzipBinaryData() function, user application must provide an input buffer

containing the binary compressed data and an output buffer that will receive the

uncompressed data. If the input buffer contains all the binary compressed data and the

output buffer is large enough, decompression can be done in a single step. Otherwise,

the unzip activity can be done by repeated calls of the GK_UnzipBinaryData() function. In

the latter case, the user application must provide more input and/or consume the output

(providing more output space) before each call. The GK_UnzipBinaryData() function

provides each time as much output as possible, until there is no more input data or no

more space in the output buffer.

In order to use the GK_UnzipBinaryData() function, user application must also provide a

parameter of GK_UnzipHelper_t type, which is an internal structure managed by the GK-

API during the unzip process. Before starting to unzip binary data, user application has to

create an instance of GK_UnzipHelper_t type by means of the GK_CreateUnzipHelper()

function. Then, in order to provide the input data buffer, user have to initialize the

GK_UnzipHelper_t structure using the GK_InitializeUnzipHelper() function; this function

has to be called every time more input is needed to complete the unzip process. After

that, user application have to repeatedly call the GK_UnzipBinaryData() function until no

more output is available. When the unzip process is terminated (as well as or an error

has occurred), the helper structure has to be cleared using the GK_ClearUnzipHelper()

function. Finally, the helper structure has to be released using the

GK_DestroyUnzipHelper() function since it cannot be reused to start another unzip

session.

9.1 GK_CreateUnzipHelper

GK_Reply_t GK_CreateUnzipHelper

(GK_UnzipHelper_t*

pUnzipHelper);

Parameters: pUnzipHelper Pointer to the returned internal

helper structure

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

UNZIPPING CALLBACK FUNCTIONS

66

Description:
This function must be invoked to create an internal helper structure

pUnzipHelper. The pUnzipHelper parameter is allocated and returned by the
GK-API and must be released by the calling application using the
GK_DestroyUnzipHelper() function.

9.2 GK_DestroyUnzipHelper

GK_Reply_t GK_DestroyUnzipHelper

(GK_UnzipHelper_t

unzipHelper);

Parameters: unzipHelper Internal helper structure created

using GK_CreateUnzipHelper()

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked to deallocate an internal helper structure

allocated using the GK_CreateUnzipHelper() function.

9.3 GK_InitializeUnzipHelper

GK_Reply_t GK_InitializeUnzipHelpe

r (GK_UnzipHelper_t

unzipHelper,

 const GK_Byte_t* Data,

 GK_Length_t DataLength);

Parameters: unzipHelper Internal helper structure created

using GK_CreateUnzipHelper()

 Data Pointer to a user buffer

containing binary data to be

unzipped

 DataLength Length of the data in the user

buffer

UNZIPPING CALLBACK FUNCTIONS

67

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_INVALID_PARAMETER Value of parameter DataLength is

not valid

Description:
This function must be invoked to initialize an internal helper structure

allocated using the GK_CreateUnzipHelper() function. If binary data has to
be unzipped in a single step, the Data parameter must point to a buffer
containing all the binary data to be unzipped; otherwise, the Data parameter
can point to a buffer containing only a part of the binary data to be unzipped.

9.4 GK_ClearUnzipHelper

GK_Reply_t GK_ClearUnzipHelper

(GK_UnzipHelper_t

unzipHelper);

Parameters: unzipHelper Internal helper structure created

using GK_CreateUnzipHelper()

Return

values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

 GK_API_NOT_INITIALIZED GK-API not initialized

Description:
This function must be invoked to clear an internal helper structure allocated
using the GK_CreateUnzipHelper() function. Internal helper structures used
to unzip binary data must be cleared after each unzip session is terminated,
successfully or unsuccessfully.

9.5 GK_UnzipBinaryData

GK_Reply_t GK_UnzipBinaryData

(GK_UnzipHelper_t

unzipHelper,

 char* buffer,

 GK_Length_t bufferLength,

 GK_Length_t* pDataLength);

UNZIPPING CALLBACK FUNCTIONS

68

Parameters: unzipHelper Internal helper structure created

using GK_CreateUnzipHelper()

 buffer Pointer to a user output buffer

 bufferLength Length of user output buffer

 pDataLength Returned length of unzipped data

Return

values:

GK_SUCCESS Function successfully completed.

All the binary data have been

unzipped, i.e. the end of the

compressed data has been

reached and all uncompressed

output has been produced

 GK_MORE_OUTPUT_AVAILABLE Function successfully completed.

User buffer is full and the

function must be called again

because there might be more

output pending

 GK_MORE_INPUT_NEEDED Function successfully completed.

All provided binary data have

been unzipped and the function

must be called again providing

more input binary data to

complete the unzip process.

 GK_FAILED Function not completed

 GK_API_ ERROR Internal error

 GK_API_NOT_INITIALIZED GK-API not initialized

 GK_INVALID_PARAMETER Value of parameter bufferLength

is not valid

 GK_DATA_ERROR Supplied data are invalid or

corrupted.

Description:
This function must be invoked to unzip compressed binary data. This
function decompresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full.

CHAPTER TITLE, VERDANA 9PT, RIGHT ALIGNED

10. RECOVERY

RECOVERY

70

This section describes the recovery process implemented by the BCS system and the

actions to be taken when the system notifies the events concerning the services. In order

to receive the connection status, the client application has to invoke the

Subscribe.System.ServiceMarketStatus subscription class and it has to evaluate the data

provided by the Notify.System.ServiceMarketStatus callback function.

Instead, events concerning the status of the connection between client and server are

provided through the MarketStatus callback (see section 6.3).

10.1 Services

The BCS system is based on a set of services, each one managing a specific set of

functions. It is possible to be notified about the status of a single service of the system.

Possible values for service id are the following:

Service ServiceID Description

Risk Manager 2000 The service that manages all Risk

Management requests

Clearing Data

Manager

2100 The service that stores all market

realtime data

Report Manager 2200 The service that manages all report

requests

Transactional

Gateway

2300 The gateway that connects to CC&G

Clearing system and manages all

transactional requests

Realtime Gateway 2400 The gateway that connects to CC&G

Clearing system and receives real

time data

Sola Gateway 2500 The service that manages the

connection to SOLA Derivatives

Is it possible, using API, still call a Subscribe.System.ServiceMarketStatus that include a

group of components (ServiceID=100). This layout is obsolete and will be dismissed

soon.

Please note that in the following tables the length column stands for the maximum length

of the field.

RECOVERY

71

10.2 Subscribe.System.ServiceMarketStatus

Request the service market connection status. The status is notified by

Notify.System.ServiceMarketStatus.

Field Type Length Description

ServiceID integer 10 The ID of the service

RequestedMember string 100 Not mandatory.

10.3 Notify.System.ServiceMarketStatus

Notify the service connection status.

Field Type Length Description

Member String 100 Member name.

ServiceID integer 10 The ID of the service

Market string 100 Market identifier

Status string 50 The connection status of the service

<ServiceID> operating on the

market <Market> for the member

<Member>.

The possible values are:

CONNECTION_UP: the service is

available.

CONNECTION_CRASH: the service is

not available

The following actions need to be taken when Notify.System.ServiceMarketStatus events

are received:

CONNECTION_UP The connection is successfully

established: the user can start its

activity.

RECOVERY

72

CONNECTION_CRASH The service is no longer available:

the user should wait for a

CONNECTION_UP event in order to

restart its activity. All the Subscribe

calls executed before the

CONNECTION_CRASH event should be

unsubscribed and then called again by

the user.

Please note that the status “CONNECTION_DOWN” and “CONNECTION_WARNING” has

been dismissed so is not possible receive this notifies.

The below table list the link between the ServideID and the related Subscriptions:

Service ServiceID Subscriptions

Risk Manager 2000 SubscribeStandardPortfolioParameters

SubscribeCustomPortfolioParameters

SubscribeTradeLimitParameters

SubscribeTradeLimitAlarms

SubscribePositionLimitParameters

SubscribePositionLimitAlarms

SubscribeMarginLimitParameters

SubscribeMarginLimitAlarms

Clearing Data

Manager

2100 SubscribeSeries

SubscribePositions

SubscribeRectifications

SubscribePositionTransfers

SubscribeContracts

SubscribeContractTransfers

SubscribeOpenCloseContractChanges

SubscribeClientCodeContractChanges

SubscribeSplitContracts

SubscribeCollateralGuarantees

SubscribeDepositedGuarantees

SubscribeEarlyExercises

SubscribeExByEx

SubscribeExerciseAtExpiry

RECOVERY

73

Service ServiceID Subscriptions

SubscribeAssignments

SubscribeAssignmentsSent

SubscribeClearingMessages

SubscribeIntradayMarginCalls

SubscribeIntradayMarginCallsSent

SubscribeSubAccountTransfers

SubscribeSubAccountParameters

SubscribeSubAccountClientCodeLinks

SubscribeSubAccountClientCodeLinkChange

SubscribeGiveOutParameters

SubscribeTakeUpParameters

Report Manager 2200 SubscribeReport

Transactional

Gateway

2300 -

Realtime

Gateway

2400 -

Sola Gateway 2500 SubscribeFirmStatus

10.4 Recovery Simulation in CDS (Test)

environment

It’s possible to test the System.ServiceMarketStatus messages receiption in the CDS

(Test) environment every Tuesday. Two sessions are available, one starting at 10:00

(GMT) and one starting at 15:00 (GMT).

After the login to the system, the user should send a

Subscribe.System.ServiceMarketStatus message for each service managed by his

application, in order to receive the related status updates (as per highlighted in the table

at section 10.1).

The crash simulation of the BCS components will be executed as follows:

RECOVERY

74

GMT Time Description

10:00 / 15:00 The component Report Manager

crashes; one or more messages with

status CONNECTION_CRASH and

ServiceId=2200 are received.

10:05 / 15:05 The component Report Manager is

restored; one or more messages with

status CONNECTION_UP and

ServiceId=2200 are received.

10:15 / 15:15 The component Realtime Gateway

crashes; one or more messages with

status CONNECTION_CRASH and

ServiceId=2400 are received.

10:20 / 15:20 The component Realtime Gateway is

restored; one or more messages with

status CONNECTION_UP and

ServiceId=2400 are received.

10:30 / 15:30 The component Transactional Gateway

crashes; one or more messages with

status CONNECTION_CRASH and

ServiceId=2300 are received.

10:35 / 15:35 The component Transactional Gateway

is restored; one or more messages with

status CONNECTION_UP and

ServiceId=2300 are received.

10:45 / 15:45 The component Clearing Data Manager

crashes; one or more messages with

status CONNECTION_CRASH and

ServiceId=2100 are received.

10:50 / 15:50 The component Clearing Data Manager

is restored; one or more messages with

status CONNECTION_UP and

ServiceId=2100 are received.

11:00 / 16:00 The component Risk Managment

crashes; one or more messages with

status CONNECTION_CRASH and

ServiceId=2000 are received.

11:05 / 16:05 The component Risk Managment is

restored; one or more messages with

RECOVERY

75

GMT Time Description

status CONNECTION_UP and

ServiceId=2000 are received.

11:15 / 16:15 The component Sola Gateway crashes;

one or more messages with status

CONNECTION_CRASH and

ServiceId=2500 are received.

11:20 / 16:20 The component Risk Managment is

restored; one or more messages with

status CONNECTION_UP and

ServiceId=2500 are received.

After every recovery simulation session, the system becomes available as per the usual

schedule.

An additional Connection Crash on the Transactional Gateway component may be

received during the recovery sessions. This is caused by CCG settlement procedures.

Please note that, in case a user sends more than a Subscribe.System.MarketStatus for

the same ServiceId, it will receive a number of CONNECTION_CRASH and

CONNECTION_UP messages equal to the number of

Subscribe.System.ServiceMarketStatus active (accepted by the system).

For instance, if a user has 3xSubscribe.System.ServiceMarketStatus active with

ServiceId=2300, it will receive 3xNotify.System.ServiceMarketStatus with status

CONNECTION_CRASH and ServiceId=2300 followed by

3xNotify.System.ServiceMarketStatus with status CONNECTION_UP and

ServiceId=2300.

Disclaimer

This publication is for information purposes only and is not a recommendation to engage in investment activities.

This publication is provided “as is” without representation or warranty of any kind. Whilst all reasonable care has

been taken to ensure the accuracy of the content, Euronext does not guarantee its accuracy or completeness.

Euronext will not be held liable for any loss or damages of any nature ensuing from using, trusting or acting on

information provided. No information set out or referred to in this publication shall form the basis of any contract.

The creation of rights and obligations in respect of financial products that are traded on the exchanges operated

by Euronext’s subsidiaries shall depend solely on the applicable rules of the market operator. All proprietary rights

and interest in or connected with this publication shall vest in Euronext. No part of it may be redistributed or

reproduced in any form without the prior written permission of Euronext. Euronext disclaims any duty to update

this information. Euronext refers to Euronext N.V. and its affiliates. Information regarding trademarks and

intellectual property rights of Euronext is located at www.euronext.com/terms-use.

© 2021, Euronext N.V. - All rights reserved

Client Support

T (toll free): 0080026772000

T (from mobile): +39 02 45411399

E: Client-Support@borsaitaliana.it

Customer Relationship

Management

T: +39 02 72426 512

E: clients-services@borsaitaliana.it

CONTACT

ccg.it

